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• How to formulate optimal power flow for distribution systems
• Objectives 

• Single objective
• Multi-objectives

• Constraints 
• Equality constraints
• Inequality constraints

• Variables 
• Continuous variables
• Discrete variables

• How to solve optimal power flow for distribution systems
• How to deal with the non-convex OPF

• Approximation and relaxation 
• Conventional solution methods

• LP, NLP, MILP and MINLP in GAMS
• Distributed solution methods

• ADMM 
• Heuristic methods 

• GA, PSO
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How to formulate OPF
• The optimal power flow (OPF) was introduced by Carpentier in 

1962 [1].
• Generally, the OPF is a nonlinear and non-convex problem 

including an objective function which must be optimized 
(maximized or minimized), a set of equality and inequality 
constraints which must be satisfied (without violating power flow 
constraints and operational limits), and a problem-solving method 
[2].

[1] Carpentier, J. "Contribution a l’etude du dispatching economique." Bulletin de la Societe Francaise des Electriciens3.1 (1962): 431-447.
[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓(𝑚𝑚,𝑢𝑢)

subject to 𝑔𝑔 𝑚𝑚,𝑢𝑢 = 0

ℎ 𝑚𝑚,𝑢𝑢 ≤ 0

𝐿𝐿𝐿𝐿 ≤ 𝑚𝑚 ≤ 𝑈𝑈𝐿𝐿
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Objective functions
• Objective functions

• Voltage profiles management
• Active power losses
• Active power generation cost
• Power supplied to the grid from an external utility (upstream 

grid)
• Carbon emission
• Load curtailment
• Social welfare
…

• Single objective 
• Multiple objectives

[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.
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Constraints
• Constraints introduce the feasible region of the OPF problem. 

• Equality constraints:
• Power flow equations (active/reactive line flows, bus voltages)

[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑝𝑝𝑖𝑖+1 − r𝑖𝑖
P𝑖𝑖2 + Q𝑖𝑖

2

V𝑖𝑖2

𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − x𝑖𝑖
P𝑖𝑖2 + Q𝑖𝑖

2

V𝑖𝑖2

𝑉𝑉𝑖𝑖+12 = 𝑉𝑉𝑖𝑖2 −2 𝑜𝑜𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑄𝑄𝑖𝑖 + r𝑖𝑖2 + x𝑖𝑖2
P𝑖𝑖
2+Q𝑖𝑖

2

V𝑖𝑖
2
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Constraints 
Inequality constraints:  

• Active power constraints 
• Reactive power constraints 
• Bus voltage constraints (magnitudes and angles)
• Line current/flow constraints
• Load curtailment (demand response)
• Limits on switching mechanical equipment

• Capacitor banks
• Tap position constraints

…
Various operational constraints associated with devices:

• Battery
• Fuel cell
• The purchased and sold powers 
• PV shedding
…

[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.
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Variables
Variables in OPF:

• Continuous variables 
• Distributed generators
• Inverters that connects distributed generators to the grid  
• Controllable loads (cooling and heating systems, electricity vehicles)

• Smart appliances 
…

• Discrete variables 
• Capacitors bank (binary variables)

• On load tap changers (integer variables)

…

[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.

For example, 
• In Volt/VAR optimization, reactive power injection of the inverters and voltage 

regulators are controlled to regulate the voltages.
• In demand response, real power consumption of controllable loads are reduced or 

shifted in response to power supply conditions.
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Optimal Power flow for radial distribution system
Based on different forms:

• Steady state OPF
• Transient stability-constrained OPF (transient voltage constraints, transient frequency 

constraints and transient rotor angle constraints)
• Security-constrained OPF (N-1 contingency, reserve constraints)

• Stochastic OPF (load/DER uncertainties)

• AC OPF
• DC OPF 
… 

Based on different applications: 
• Optimal power management
• Volt/VAR optimization 
• Demand response
• Stability and reliability assessment
… 

[2] Abdi, Hamdi, Soheil Derafshi Beigvand, and Massimo La Scala. "A review of optimal power flow studies applied to smart grids and microgrids." Renewable and 
Sustainable Energy Reviews 71 (2017): 742-766.
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How to solve OPF

[3] Gan, Lingwen, et al. "Optimal power flow in tree networks." 52nd IEEE Conference on Decision and Control. IEEE, 2013.

The OPF problem is difficult to solve due to the nonconvex power flow physical 
laws. There are in general three ways to deal with this challenge: 

• Approximation: linearizing the power flow formulations
• Relaxation: semidefinite programming (SDP) or second-order cone program 

(SCOP)

In the “power flow calculation” class, we have covered some approaches to 
linearize the power flow:

• DCOPF 
• Completely ignore reactive power, assume all the voltage are always 1 p.u., 

ignore line conductance
• May not satisfy the nonlinear power flow equations
• Can be used as initial point for other methods, but cannot provide final 

solutions in distribution systems

• Dist-flow
• Neglect nonlinear terms (Linearized Dist-flow)
• Piecewise linear formulation (may be more accurate)
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[4] Bai, Xiaoqing, et al. "Semidefinite programming for optimal power flow problems." International Journal of Electrical Power & Energy Systems 30.6-7: 383-392, 
2008.

The NLP-based OPF has the convergence problem due to its nonconvex nature [4].
• The semidefinite programming (SDP) has been one of the most active fields in 

numerical optimization for over decades. 

• It has been proven that the SDP is convex and the primal-dual interior point 
algorithm for SDP may possess super-linear convergence theoretically. 

• The SDP belongs to convex optimization and can guarantee global optimal solution 
using interior point method (IPM).

• In general, to reformulate a classical OPF to a SDP model:
• By applying 𝑋𝑋 = 𝑚𝑚𝑇𝑇𝑚𝑚, where 𝑚𝑚 is a row vector. 
• The nonconvex quadratic terms of power flow constraints will be replaced with the 

relevant elements of the variable matrix 𝑋𝑋 in SDP. 
• The SDP is concerned with choosing a positive semidefinite matrix to optimize a linear 

function which is subject to linear constraint. In other words, the LP is generalized by 
replacing the vector of variables with a symmetric matrix and the nonconvex constraints 
with a positive semidefinite constraint. 

SDP Relaxation of OPF
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[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

Ref. [5] proposes a SDP relaxation of the ACOPF problem, which shows that the 
proposed SDP relaxed ACOPF can be solved by a generic optimization solver. 

At each multiphase bus, the distribution network model can have:
• Grounded wye-connected loads or resources.
• Ungrounded delta-connected loads or resources.
• A combination of wye- and delta-connected loads or resources at the primary 

side of distribution transformers.
• A combination of line-to-line and line-to-grounded-neutral loads or resources at 

the secondary side of distribution transformers.

In [5], it assumes every bus have: 
• Three wye-connected net loads (one on each phase, with grounded neutral). 
• Three delta-connected net loads (one across each pair of phases, ungrounded).

SDP Relaxation of OPF
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

Let 𝑉𝑉𝑖𝑖
𝜙𝜙 denote the complex voltage on phase 𝜙𝜙 of bus 𝑖𝑖, and define 𝑉𝑉𝑖𝑖 ≔ 𝑉𝑉𝑖𝑖𝑎𝑎,𝑉𝑉𝑖𝑖𝑏𝑏,𝑉𝑉𝑖𝑖𝑐𝑐

𝑇𝑇
.     

Let 𝐼𝐼𝑖𝑖𝑗𝑗
𝜙𝜙 denote the phase 𝜙𝜙 current on the line from bus 𝑖𝑖 to bus 𝑗𝑗, and define 𝐼𝐼𝑖𝑖𝑗𝑗 ≔

𝐼𝐼𝑖𝑖𝑗𝑗𝑎𝑎 , 𝐼𝐼𝑖𝑖𝑗𝑗𝑏𝑏 , 𝐼𝐼𝑖𝑖𝑗𝑗𝑐𝑐
𝑇𝑇

.     

Let 𝑦𝑦𝑖𝑖 ∈ ℂ3×3  denote the shunt admittance at bus 𝑖𝑖  and 𝑖𝑖𝑖𝑖𝑗𝑗 ∈ ℂ3×3  denote the series 
impedance of line 𝑖𝑖𝑗𝑗.

Let 𝑆𝑆𝑌𝑌,𝑖𝑖 = 𝑠𝑠𝑌𝑌,𝑖𝑖
𝑎𝑎 , 𝑠𝑠𝑌𝑌,𝑖𝑖

𝑏𝑏 , 𝑠𝑠𝑌𝑌,𝑖𝑖
𝑐𝑐 𝑇𝑇

denote the complex power consumptions of wye-connected net 
loads at bus 𝑖𝑖.

Let 𝑆𝑆∆,𝑖𝑖 = 𝑠𝑠∆,𝑖𝑖
𝑎𝑎𝑏𝑏 , 𝑠𝑠∆,𝑖𝑖

𝑏𝑏𝑐𝑐 , 𝑠𝑠∆,𝑖𝑖
𝑐𝑐𝑎𝑎 𝑇𝑇

and 𝐼𝐼∆,𝑖𝑖 = 𝐼𝐼∆,𝑖𝑖
𝑎𝑎𝑏𝑏, 𝐼𝐼∆,𝑖𝑖

𝑏𝑏𝑐𝑐 , 𝐼𝐼∆,𝑖𝑖
𝑐𝑐𝑎𝑎 𝑇𝑇

denote the complex power consumptions 
and current of delta-connected net loads at bus 𝑖𝑖, respectively.
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

Min f(𝑠𝑠𝑌𝑌, 𝑠𝑠∆)

The objective minimizes the operating cost. 
• The optimization variables (𝑠𝑠𝑌𝑌, 𝑠𝑠∆) integrate 

both controllable and uncontrollable 
components of wye and delta-connected net 
loads.

• 𝑠𝑠𝑌𝑌,𝑖𝑖, 𝑠𝑠∆,𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 ,∀𝑖𝑖 ∈ 𝒩𝒩. We can specify 
• the operational constraints on the 

controllable net loads; 
• the values of the uncontrollable net loads; 
• the case where is no load or generation 

units at a certain bus/phase.  

Optimal power flow of extended branch flow model (OPF-EBEF): 
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

ℓ𝑖𝑖𝑗𝑗 = 𝐼𝐼𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖𝑗𝑗𝐻𝐻

s.t. 

𝑠𝑠∆,𝑖𝑖 =
𝑉𝑉𝑖𝑖𝑎𝑎 − 𝑉𝑉𝑖𝑖𝑏𝑏 𝐼𝐼∆,𝑖𝑖

𝑎𝑎𝑏𝑏 ∗

𝑉𝑉𝑖𝑖𝑏𝑏 − 𝑉𝑉𝑖𝑖𝑐𝑐 𝐼𝐼∆,𝑖𝑖
𝑏𝑏𝑐𝑐 ∗

𝑉𝑉𝑖𝑖𝑐𝑐 − 𝑉𝑉𝑖𝑖𝑎𝑎 𝐼𝐼∆,𝑖𝑖
𝑐𝑐𝑎𝑎 ∗

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 Γ𝑉𝑉𝑖𝑖𝐼𝐼∆,𝑖𝑖
𝐻𝐻 = 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 Γ𝑋𝑋𝑖𝑖

Definition of auxiliary variable:
ℓ𝑖𝑖𝑗𝑗 , 𝑆𝑆𝑖𝑖𝑗𝑗 ,𝑋𝑋𝑖𝑖 ∈ ℂ3×3

• The 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 ℓ𝑖𝑖𝑗𝑗  denotes the magnitude squares 
of three phases of current 𝐼𝐼𝑖𝑖𝑗𝑗.

• The 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑆𝑆𝑖𝑖𝑗𝑗  denotes the sending-end three-
phase power flow on line 𝑖𝑖 → 𝑗𝑗.  

• H is the complex conjugate transpose operator

Three-phase delta-connected load at bus 𝑖𝑖

𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑉𝑉𝑖𝑖𝐼𝐼𝑖𝑖𝑗𝑗𝐻𝐻, ∀𝑖𝑖 → 𝑗𝑗

𝑋𝑋𝑖𝑖 = 𝑉𝑉𝑖𝑖𝐼𝐼𝑖𝑖𝐻𝐻, ∀𝑖𝑖 ∈ 𝒩𝒩

Γ =
1 −1 0
0 1 −1
−1 0 1
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

𝑉𝑉0 = 𝑉𝑉0
𝑟𝑟𝑟𝑟𝑟𝑟

Power balance constraints
• The receiving-end three-phase power flow on 

line k → 𝑖𝑖 as:

• The three-phase power flow to the shunt 
element at bus 𝑖𝑖:

The substation voltage is fixed and given as 𝑉𝑉0
𝑟𝑟𝑟𝑟𝑟𝑟.

All the other buses enforces the voltage magnitudes.  

�
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑆𝑆𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑖𝑖ℓ𝑘𝑘𝑖𝑖) − �
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑆𝑆𝑖𝑖𝑗𝑗

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝐻𝐻𝑦𝑦𝑖𝑖𝐻𝐻 + 𝑠𝑠𝑌𝑌,𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(Γ𝑋𝑋𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩

𝑉𝑉𝑖𝑖
𝜙𝜙 ≤ 𝑉𝑉𝑖𝑖

𝜙𝜙 ≤ 𝑉𝑉𝑖𝑖
𝜙𝜙

𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖𝑗𝑗

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑉𝑉𝑖𝑖𝐼𝐼𝑘𝑘𝑖𝑖𝐻𝐻 ) = 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑉𝑉𝑘𝑘𝐼𝐼𝑘𝑘𝑖𝑖𝐻𝐻 − 𝑉𝑉𝑘𝑘 − 𝑉𝑉𝑖𝑖 𝐼𝐼𝑘𝑘𝑖𝑖𝐻𝐻

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑆𝑆𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑖𝑖ℓ𝑘𝑘𝑖𝑖)

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝐻𝐻𝑦𝑦𝑖𝑖𝐻𝐻)
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

In [5], it is assumed that 𝑓𝑓 in the objective is a convex function.

Sets 𝑆𝑆𝑖𝑖 are convex and compact for a number of controllable loads.

The OPF problem is nonconvex only because of the quadratic equality constraints:

  

   

ℓ𝑖𝑖𝑗𝑗 = 𝑰𝑰𝒊𝒊𝒊𝒊𝑰𝑰𝒊𝒊𝒊𝒊𝑯𝑯

𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑽𝑽𝒊𝒊𝑰𝑰𝒊𝒊𝒊𝒊𝑯𝑯, ∀𝑖𝑖 → 𝑗𝑗

𝑋𝑋𝑖𝑖 = 𝑽𝑽𝒊𝒊𝑰𝑰𝒊𝒊𝑯𝑯, ∀𝑖𝑖 ∈ 𝒩𝒩 �
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑆𝑆𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑖𝑖ℓ𝑘𝑘𝑖𝑖) − �
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑆𝑆𝑖𝑖𝑗𝑗

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑽𝑽𝒊𝒊𝑽𝑽𝒊𝒊𝑯𝑯𝑦𝑦𝑖𝑖𝐻𝐻)+𝑠𝑠𝑌𝑌,𝑖𝑖+ 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(Γ𝑋𝑋𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩

This paper introduces method to obtain the convex surrogate of the original OPF via 
SDP relaxation. 
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

It first reformulates the original OPF as the following equivalent problem, with 
some newly defined parameters:

  

   
�
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑆𝑆𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑖𝑖ℓ𝑘𝑘𝑖𝑖) − �
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑆𝑆𝑖𝑖𝑗𝑗

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑣𝑣𝑖𝑖𝑦𝑦𝑖𝑖𝐻𝐻) + 𝑠𝑠𝑌𝑌,𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(Γ𝑋𝑋𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩

Min f(𝑠𝑠𝑌𝑌, 𝑠𝑠∆)
s.t. 

𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖𝑗𝑗𝐻𝐻 + 𝑖𝑖𝑖𝑖𝑗𝑗𝑆𝑆𝑖𝑖𝑗𝑗𝐻𝐻 + 𝑖𝑖𝑖𝑖𝑗𝑗ℓ𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖𝑗𝑗𝐻𝐻

𝑣𝑣0 = 𝑉𝑉0
𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉0

𝑟𝑟𝑟𝑟𝑟𝑟 𝐻𝐻

𝑣𝑣𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑣𝑣𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖

Power balance constraints
• Newly parameters 𝑣𝑣𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝐻𝐻

Bus voltage constraints
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

The OPF is nonconvex only because of the following quadratic constraints and the voltage-related 

constraint 𝑉𝑉𝑖𝑖
𝜙𝜙 ≤ 𝑉𝑉𝑖𝑖

𝜙𝜙 ≤ 𝑉𝑉𝑖𝑖
𝜙𝜙

  

  

   
𝑉𝑉𝑖𝑖
𝐼𝐼𝑖𝑖𝑗𝑗

𝑉𝑉𝑖𝑖
𝐼𝐼𝑖𝑖𝑗𝑗

𝐻𝐻
=

𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝑗𝑗𝐻𝐻 ℓ𝑖𝑖𝑗𝑗

 ≽ 0, ∀𝑖𝑖 → 𝑗𝑗

 

𝑉𝑉𝑖𝑖
𝐼𝐼∆,𝑖𝑖

𝑉𝑉𝑖𝑖
𝐼𝐼∆,𝑖𝑖

𝐻𝐻
=

𝑣𝑣𝑖𝑖 𝑋𝑋𝑖𝑖𝑗𝑗
𝑋𝑋𝑖𝑖𝑗𝑗𝐻𝐻 𝜌𝜌𝑖𝑖𝑗𝑗

 ≽ 0, ∀𝑖𝑖 ∈ 𝒩𝒩

𝑣𝑣𝑖𝑖 ≽ 0, ∀𝑖𝑖 ∈ 𝒩𝒩

Positive semidefinite constraints 𝑋𝑋𝑋𝑋𝐻𝐻 ≥ 0

ℓ𝑖𝑖𝑗𝑗 = 𝑰𝑰𝒊𝒊𝒊𝒊𝑰𝑰𝒊𝒊𝒊𝒊𝑯𝑯

𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑽𝑽𝒊𝒊𝑰𝑰𝒊𝒊𝒊𝒊𝑯𝑯, ∀𝑖𝑖 → 𝑗𝑗

𝑋𝑋𝑖𝑖 = 𝑽𝑽𝒊𝒊𝑰𝑰𝒊𝒊𝑯𝑯, ∀𝑖𝑖 ∈ 𝒩𝒩
�
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑆𝑆𝑘𝑘𝑖𝑖 − 𝑖𝑖𝑘𝑘𝑖𝑖ℓ𝑘𝑘𝑖𝑖) − �
𝑘𝑘:𝑘𝑘→𝑖𝑖

𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔 𝑆𝑆𝑖𝑖𝑗𝑗

= 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(𝑽𝑽𝒊𝒊𝑽𝑽𝒊𝒊𝑯𝑯𝑦𝑦𝑖𝑖𝐻𝐻)+𝑠𝑠𝑌𝑌,𝑖𝑖+ 𝑑𝑑𝑖𝑖𝑚𝑚𝑔𝑔(Γ𝑋𝑋𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩
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SDP Relaxation of OPF

[5] Zhao, Changhong, Emiliano Dall’Anese, and Steven H. Low. "Convex relaxation of OPF in multiphase radial networks with delta connection." Proc. of Bulk Power 
Systems Dynamics and Control Symposium. 2017.

𝑜𝑜𝑚𝑚𝑖𝑖𝑟𝑟 𝑣𝑣𝑖𝑖 = 1, ∀𝑖𝑖 ∈ 𝒩𝒩

𝑜𝑜𝑚𝑚𝑖𝑖𝑟𝑟
𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝑗𝑗𝐻𝐻 ℓ𝑖𝑖𝑗𝑗

= 1, ∀𝑖𝑖 → 𝑗𝑗

𝑜𝑜𝑚𝑚𝑖𝑖𝑟𝑟
𝑣𝑣𝑖𝑖 𝑋𝑋𝑖𝑖𝑗𝑗
𝑋𝑋𝑖𝑖𝑗𝑗𝐻𝐻 ℓ𝑖𝑖𝑗𝑗

= 1, ∀𝑖𝑖 ∈ 𝒩𝒩

Rank-1 constraints:
• The rank of a matrix is an estimate of the number 

of linearly independent rows or columns of a 
matrix A.

• The matrix has rank 1 because each of its column 
is a multiple of the first column. 

• Every rank 1 matrix 𝐴𝐴 can be written as 𝐴𝐴 =
𝑈𝑈𝑉𝑉𝑇𝑇, where 𝑈𝑈 and 𝑉𝑉 are column vector. 

• For example
𝐴𝐴 = 1 4 5

2 8 10
𝐴𝐴 = 1

2 1 4 5
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SDP Relaxation of OPF

[4] Bai, Xiaoqing, et al. "Semidefinite programming for optimal power flow problems." International Journal of Electrical Power & Energy Systems 30.6-7 (2008): 383-
392.

The primal–dual interior point method (PDIPM) is used to solve the SDP problem successfully.

min𝐴𝐴0⨂𝑋𝑋
s.t. 

ℒ 𝑋𝑋, 𝑦𝑦 = 𝐴𝐴0⨂𝑋𝑋 − 𝜇𝜇 ln det 𝑋𝑋 −�
𝑖𝑖=1

𝑚𝑚

𝑦𝑦𝑖𝑖 𝑏𝑏𝑖𝑖 − 𝐴𝐴𝑖𝑖⨂𝑋𝑋

𝑋𝑋 ≽ 0

Relaxed barrier version

min𝐴𝐴0⨂𝑋𝑋 − 𝜇𝜇 ln(det(𝑋𝑋))
s.t. 

𝐴𝐴𝑖𝑖⨂𝑋𝑋 = 𝑏𝑏𝑖𝑖

The Lagrangian function is then given by:

𝐴𝐴𝑖𝑖⨂𝑋𝑋 = 𝑏𝑏𝑖𝑖

The first order Karush-Kuhn-Tucker (KKT) optimality condition is: 

𝜕𝜕ℒ
𝜕𝜕𝑋𝑋 = 𝐴𝐴0 −�

𝑖𝑖=1

𝑚𝑚

𝐴𝐴0𝑦𝑦𝑖𝑖 𝜇𝜇 − 𝜇𝜇𝑋𝑋 𝜇𝜇 −1 = 0

𝜕𝜕ℒ
𝜕𝜕𝑦𝑦 = 𝐴𝐴0 − 𝐴𝐴𝑖𝑖⨂𝑋𝑋 𝜇𝜇 = 0
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How to solve OPF
The choice of the optimization methods for solving OPF is highly depending on:

• Objective function
• Constraints
• Variables

Model Type Description 

Linear Program Model with no nonlinear terms or discrete 
(i.e. binary, integer) variables

Nonlinear Program Model with general nonlinear terms 
involving only smooth functions, but no 
discrete variables.

Mixed Integer Program Model with binary, integer variables, but 
no nonlinear terms.

Mixed Integer Nonlinear Program Model with both nonlinear 
terms and discrete variables.

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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Conventional optimization solvers: GAMS
The General Algebraic Modeling System (GAMS) is a high-level 
modeling system for mathematical programming and optimization 
[6]. 
• It consists of a language compiler and a stable of integrated high-

performance solvers. 
• GAMS is tailored for complex, large scale modeling applications, 

and allows you to build large maintainable models that can be 
adapted quickly to new situations. 

• GAMS is specifically designed for modeling linear, nonlinear and 
mixed integer optimization problems. 

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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GAMS 
GAMS provides different solvers to solve different types of optimal problem.  

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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GAMS 
One example is given here to show how to solve an OPF in GAMS: 

• Sets for variables and parameters

• Parameter values

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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GAMS 
One example is given here to show how to solve an OPF in GAMS: 

• Topology information

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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GAMS 
One example is given here to show how to solve an OPF in GAMS: 

• Variables • Equations

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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GAMS 
One example is given here to show how to solve an OPF in GAMS: 

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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Interfacing GAMS and MATLAB
• The optimization packages in MATLAB are useful for small-scale 

models. 
• When solving large-scale model, we can use MATLAB to handle 

parameter calculations and call GAMS to solve optimal problems.  
• This data exchange between GAMS and MATLAB is accomplished 

via the GDX (GAMS Data Exchange) file. 
• wgdx: write indexed parameters to GDX file
• rgdx: read indexed parameters from GDX file

[6] An Introduction to GAMS [online]: https://www.gams.com/products/introduction/

https://www.gams.com/products/introduction/
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Distributed optimization 
However, a centralized algorithm may not be effective any more for large-scale 
optimization problem.  
To provide a scalable, fast solution to large scale optimization problems, distributed 
optimization algorithms are proposed [7]:
• In a distributed framework, the original centralized problem is divided into a certain 

number of small-scale sub-problems. 
• Each sub-problem is solved by a single agent as a computation entity with agent-to-

agent communication capabilities. 
• A certain communication between adjacent agents is required during the computation 

process to exchange necessary data according to a certain protocol. 
• Thus, all agents can solve the centralized problem collaboratively in a parallel fashion.

[7] J. Liu, M. Benosman and A. U. Raghunathan, "Consensus-based distributed optimal power flow algorithm," 2015 IEEE Power & Energy Society Innovative Smart 
Grid Technologies Conference (ISGT), Washington, DC, 2015, pp. 1-5.

Fig.1 (a) Centralized algorithm; (b) Distributed algorithm [7]
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Distributed CVR in Unbalanced Distribution Systems with PV 
Penetration

3030
[8] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," in IEEE Transactions on Power Systems, vol. 29, no. 3, 
pp. 1306-1315, May 2014.

Conservation voltage reduction (CVR) is an established idea and one of the most cost-effective 
way to save energy. 
CVR can reduce voltages on the distribution system in a controlled manner for:

• Short-term (peak-time) peak demand reduction 
• Long-term (24 hours) energy saving 

CVR still keeps the lowest customer utilization voltage consistent with levels determined by 
regulatory agencies and standards-setting organizations

Fig.2 (left) Peak demand reduction and (right) 24-hr energy saving [8]
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Distributed CVR in Unbalanced Distribution Systems with PV 
Penetration

3131

To achieve CVR:
• Conventional approach for implementing CVR is by adjusting tap 

positions of On-load Tap Changer (OLTC) at the substation 
transformers, which ensures the nodal voltages are reduced in a 
manner that neither violates the acceptable voltage ranges nor affects 
for performance. 

• A more advanced way of implementation is to integrate CVR into 
Volt/VAR optimization (OPF-based VVO) models as an objection 
function, which provide a framework for optimal control of voltage 
regulation and VAR control devices to achieve specific operational 
goals without violating any of the operational constraints. 

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Distributed CVR in Unbalanced Distribution Systems with PV 
Penetration

3232

In [9], a distributed multi-objective optimization model is proposed for implementing CVR in 
unbalanced three-phase distribution systems. 

• An optimization model is developed to coordinate the fast dispatch of PV inverters with the slow-dispatch of 
OLTC and CBs, in order to facilitate voltage reduction in unbalanced three-phase distribution systems.

• In order to ensure the solution optimality and maintain customer data privacy and ownership, a distributed 
solution methodology is proposed to dispatch all the abovementioned devices in a unified optimization 
framework. The solution methodology is based on a modified ADMM technique to handle the non-convex 
optimization problem with discrete switching and tap changing variables.

• The trade-off between voltage reduction and real power loss reduction is quantified numerically using the 
developed multi-objective VVO formulation.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.3 Multi-timescale voltage regulation framework in VVO



33

Multi-objective Optimization Model

3333

Multi-objective function aims to (1) minimize the 
largest bus voltage; (2) minimize active power losses, 
with the weight factors 𝑤𝑤1 and 𝑤𝑤2. 
The distribution system operators can adjust the 
weighting factors 𝑤𝑤1  and 𝑤𝑤2  according to specific 
operational requirements.

min
𝑉𝑉𝑖𝑖,𝑃𝑃𝑖𝑖,𝑄𝑄𝑖𝑖

𝑤𝑤1�
𝑖𝑖=1

𝑁𝑁

𝑉𝑉𝑖𝑖,𝜙𝜙∗ + 𝑤𝑤2�
𝑖𝑖=1

𝑁𝑁

𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖,𝜙𝜙

A centralized optimization model is presented to coordinate the fast-dispatch of PV inverters and the slow-
dispatch of conventional voltage regulation devices (OLTC and CBs) to facilitate voltage reduction in unbalanced 
distribution systems.

𝑉𝑉𝑖𝑖,𝜙𝜙∗ ≥ max
𝑡𝑡∈𝑇𝑇

𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 Find the largest voltage magnitude at bus i at 
time t.

s.t.

𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠𝑖𝑖,𝜙𝜙 = �
𝑡𝑡=1

𝑇𝑇

𝑜𝑜𝑖𝑖,𝜙𝜙
𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 2

+ 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 2

𝑉𝑉𝑠𝑠2
Determines the overall active power losses on 
the line connecting bus i and bus i-1 at t.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Multi-objective Optimization Model

3434

Nodal active power balance formulation, which includes the 
active power in-flow and out-flow at bus i, active power output of 
PV inverter, as well as the ZIP active load of bus i.

𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 = 𝑃𝑃𝑖𝑖−1,𝑡𝑡,𝜙𝜙

𝑙𝑙 − 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑍𝑍𝑍𝑍𝑃𝑃 + 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝

𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑃𝑃𝑉𝑉 = 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 − 𝜀𝜀𝑖𝑖,𝑡𝑡,𝜙𝜙
The uncertainty of PV power is represented by Gaussian random 
variables for PV power prediction error. Accordingly, each agent 
predicts the available nodal PV power over the decision window. 
Due to the uncertainty of PV power in real-time, the predicted 
value 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 is different from the actual PV power 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑃𝑃𝑉𝑉 . The 

difference is modeled using a Gaussian error variable 𝜀𝜀𝑖𝑖,𝑡𝑡,𝜙𝜙.

𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 = 𝑄𝑄𝑖𝑖−1,𝑡𝑡,𝜙𝜙

𝑙𝑙 − 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑍𝑍𝑍𝑍𝑃𝑃 + 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑃𝑃𝑉𝑉 + 𝑄𝑄𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶
Nodal reactive power balance formulation, which determines the 
reactive power output of PV inverter at bus i and reactive power 
output of CB at bus i.

−𝑞𝑞𝑖𝑖,𝑡𝑡,𝜙𝜙
∗ ≤ 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑃𝑃𝑉𝑉 ≤ 𝑞𝑞𝑖𝑖,𝑡𝑡,𝜙𝜙
∗

𝑞𝑞𝑖𝑖,𝑡𝑡,𝜙𝜙
∗ = 𝑆𝑆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑃𝑃𝑉𝑉 2 − 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 2 Limit the reactive power capacity of PV inverters based on PV 

generation capacity and the active power output.

𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝐶𝐶𝐶𝐶 = 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶𝑞𝑞𝑖𝑖𝐶𝐶𝐶𝐶

Obtains the CB reactive power injection at bus i. 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶represents the 
on/off status of the CB at bus i during the dispatch period T. For 
buses without CB, 𝑞𝑞𝑖𝑖𝐶𝐶𝐶𝐶 is set to zero.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Multi-objective Optimization Model

3535

The ZIP active and reactive load by second-order polynomial 
formulations. Summation of ZIP coefficients for both active and 
reactive are set to 1. 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝐷𝐷  and 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝐷𝐷  are active and reactive power 

demand factors during the dispatch period, respectively.

𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑍𝑍𝑍𝑍𝑃𝑃 = 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝐷𝐷 (𝑍𝑍𝑖𝑖
𝑝𝑝𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙

2 + 𝐼𝐼𝑖𝑖
𝑝𝑝𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 + 𝑃𝑃𝑖𝑖

𝑝𝑝)

The bus voltage is maintained within the allowable range, and the 
voltage limits are set to be [0.95, 1.05].

𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑍𝑍𝑍𝑍𝑃𝑃 = 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

𝐷𝐷 (𝑍𝑍𝑖𝑖
𝑞𝑞𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙

2 + 𝐼𝐼𝑖𝑖
𝑞𝑞𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 + 𝑃𝑃𝑖𝑖

𝑞𝑞)

𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 = 𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 −
𝑜𝑜𝑖𝑖−1,𝑡𝑡,𝜙𝜙𝑃𝑃𝑖𝑖−1,𝑡𝑡,𝜙𝜙

𝑙𝑙 + 𝑚𝑚𝑖𝑖−1,𝑡𝑡,𝜙𝜙𝑄𝑄𝑖𝑖−1,𝑡𝑡,𝜙𝜙
𝑙𝑙

𝑉𝑉𝑠𝑠
Bus voltage using DistFlow equations

𝑉𝑉1,𝑡𝑡 = 𝑉𝑉𝑠𝑠 + 𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝𝑉𝑉𝑡𝑡𝑎𝑎𝑝𝑝 The substation transformer secondary voltage 𝑉𝑉1,𝑡𝑡  according to 

primary voltage 𝑉𝑉𝑠𝑠 and OLTC tap position 𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝.

𝑉𝑉𝑖𝑖,𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑉𝑉𝑖𝑖,𝑡𝑡,𝜙𝜙 ≤ 𝑉𝑉𝑖𝑖,𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Multi-objective Optimization Model

3636

The maximum allowable switching actions of CBs 
and OLTC during the dispatch period. For example, in 
the following case studies, the 𝐶𝐶𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚 is set to be 3 
and 𝑇𝑇𝐴𝐴𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚 is set to be 5.

�
𝑡𝑡∈𝑇𝑇

𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶 − 𝐼𝐼𝑖𝑖−1,𝑡𝑡
𝐶𝐶𝐶𝐶 ≤ 𝐶𝐶𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚 , 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶 ∈ {0,1}

�
𝑡𝑡∈𝑇𝑇

𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝 − 𝐼𝐼𝑡𝑡−1

𝑡𝑡𝑎𝑎𝑝𝑝 ≤ 𝑇𝑇𝐴𝐴𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚

𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝 ∈ {−10,−9, … , 0, … 9,10}

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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• A distributed algorithm based on Alternating Direction Method of Multipliers (ADMM) 
is an algorithm that solves convex optimization problems by breaking them into smaller 
pieces, each of which are then easier to handle. It has recently found wide application in 
a number of areas [10].

• With ADMM, the complexity of the OPF problem scales with the sub-area size rather 
than with the full network size.

• ADMM iteratively minimizes the augmented Lagrangian over three types of variable:
• The primary variables.
• The auxiliary variables, which are used to enforce boundary conditions among neighboring area 

(exchanged information).
• The Lagrangian multipliers for the relaxed problem (exchanged information).

[10] Boyd, Stephen, et al. "Distributed optimization and statistical learning via the alternating direction method of multipliers." Foundations and Trends in Machine 
learning, 3.1 1-122, 2011.

• However, the ADMM is originally developed to solve convex problem in the distributed 
manner, so that modifications to ADMM are necessary to correctly and efficiently 
handle the discrete variables.
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Modified ADMM

3838

In the proposed method, discrete variables are not only relaxed by continues 
variables, but also guaranteed as a generalized part of the objective function in the 
iterative process of the modified ADMM [11]. 

383838

min
𝑚𝑚,𝑍𝑍

𝑓𝑓(𝑚𝑚, 𝐼𝐼)

s.t. 𝐼𝐼 = 𝑦𝑦
𝑖𝑖 = 𝑔𝑔(𝑚𝑚, 𝑦𝑦)

𝐼𝐼 ∈ ℤ,𝑚𝑚, 𝑦𝑦 ∈ ℝ

• Discrete variable 𝐼𝐼  is replaced with an auxiliary 
continuous variable 𝑦𝑦.

• An additional auxiliary equality 𝑖𝑖 is introduced.

(1) Original problem

(2) Augmented Lagrangian function

(3) Iterative update rules (with the iteration number denoted by k)

ℒ𝑝𝑝 = 𝑓𝑓 𝑚𝑚𝑖𝑖 ,𝑦𝑦𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑧𝑧 𝑖𝑖𝑖𝑖 − 𝑔𝑔(𝑚𝑚𝑖𝑖 , 𝐼𝐼𝑖𝑖) +
𝜌𝜌
2 𝑖𝑖𝑖𝑖 − 𝑔𝑔(𝑚𝑚𝑖𝑖 , 𝐼𝐼𝑖𝑖) 2

2

𝑚𝑚𝑖𝑖 𝑟𝑟 + 1 ,𝑦𝑦𝑖𝑖(𝑟𝑟 + 1) = 𝑚𝑚𝑜𝑜𝑔𝑔min
𝑚𝑚,𝑦𝑦

ℒ𝑝𝑝

𝐼𝐼𝑖𝑖 𝑟𝑟 + 1 = 𝑚𝑚𝑜𝑜𝑔𝑔min
𝑍𝑍

𝑖𝑖𝑖𝑖(𝑟𝑟 + 1) − 𝑔𝑔(𝑚𝑚𝑖𝑖(𝑟𝑟 + 1), 𝐼𝐼𝑖𝑖) 2
2

𝜆𝜆𝑖𝑖𝑧𝑧 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖𝑧𝑧 𝑟𝑟 + 𝜌𝜌 𝑖𝑖𝑖𝑖(𝑟𝑟 + 1)− 𝑔𝑔(𝑚𝑚𝑖𝑖(𝑟𝑟 + 1), 𝐼𝐼𝑖𝑖(𝑟𝑟 + 1))

[11] Q. Liu, X. Shen and Y. Gu, "Linearized ADMM for Nonconvex Non-smooth Optimization With Convergence Analysis," in IEEE Access, vol. 7, pp. 76131-76144, 
2019.
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Iterative Process of ADMM

3939

In the iterative process of ADMM: 
• Step.1 For each bus agent i at 

iteration k, local optimization 
problems are solved independently 
and in parallel. Solutions to bus local 
variables 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 are obtained. 

𝑋𝑋𝑖𝑖 𝑟𝑟 + 1 ,𝑌𝑌𝑖𝑖(𝑟𝑟 + 1) = 𝑚𝑚𝑜𝑜𝑔𝑔min
𝑋𝑋,𝑌𝑌

ℒ𝑝𝑝 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 , 𝜆𝜆𝑖𝑖(𝑟𝑟)

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.4 Local optimization solution exchange between control agents 
at different buses [9]
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Iterative Process of ADMM

4040

• Step.2 For each bus agent i at iteration k, local optimization solution exchanges take place 
between neighboring agents to update variables based on respective bus local variables and 
variables at buses connected to bus i, which are obtained from Step 1. 

• Hence, variable set 𝑋𝑋𝑖𝑖 is updated by averaging the respective local bus variables, where 𝑖𝑖𝑖𝑖 
denotes the number of buses connected to bus i + 1:

𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 (𝑟𝑟 + 1) =

1
2
𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 + 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

− (𝑟𝑟 + 1)

𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑙𝑙 (𝑟𝑟 + 1) =

1
2
𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 + 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

− (𝑟𝑟 + 1)

𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙(𝑟𝑟 + 1) =
1
𝑖𝑖𝑖𝑖

𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 + ⋯+ 𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙

− (𝑟𝑟 + 1)

• Variables 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶  and 𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝  are updated by solving local bus optimization problem using 

𝑋𝑋𝑖𝑖 𝑟𝑟 + 1  and 𝑌𝑌𝑖𝑖 𝑟𝑟 + 1 :

𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶(𝑟𝑟 + 1) = 𝑚𝑚𝑜𝑜𝑔𝑔min
𝑍𝑍𝑖𝑖,𝑡𝑡
𝐶𝐶𝐶𝐶

𝑖𝑖1,𝑖𝑖 𝑟𝑟 + 1 − 𝑔𝑔1(𝑋𝑋𝑖𝑖 𝑟𝑟 + 1 , 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶)

𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝(𝑟𝑟 + 1) = 𝑚𝑚𝑜𝑜𝑔𝑔min

𝑍𝑍𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖2,𝑖𝑖 𝑟𝑟 + 1 − 𝑔𝑔2(𝑋𝑋𝑖𝑖 𝑟𝑟 + 1 , 𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝)

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Iterative Process of ADMM

4141

• Step.3 For each bus i at iteration k, the Lagrange multipliers are updated based on the 
ADMM iterative rules and the variables obtained in previous steps. Hence, the Lagrange 
multipliers for variable set 𝑋𝑋𝑖𝑖 are updated using

• Lagrange multipliers for auxiliary equality constraints corresponding to 𝑌𝑌𝑖𝑖  and 𝐼𝐼𝑖𝑖  are 
updated using:

• Lagrange multipliers for auxiliary equality constraints 𝑔𝑔1(�) and 𝑔𝑔2(�) are updated using:

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑃𝑃+ 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑃𝑃+ 𝑟𝑟 + 𝜌𝜌 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 − 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑃𝑃− 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑃𝑃− 𝑟𝑟 + 𝜌𝜌 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙
− 𝑟𝑟 + 1 − 𝑃𝑃𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑄𝑄+ 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑄𝑄+ 𝑟𝑟 + 𝜌𝜌 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 − 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑄𝑄− 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑄𝑄− 𝑟𝑟 + 𝜌𝜌 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙
− 𝑟𝑟 + 1 − 𝑄𝑄𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑈𝑈+ 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑈𝑈+ 𝑟𝑟 + 𝜌𝜌 𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙
+ 𝑟𝑟 + 1 − 𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙
𝑈𝑈− 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑈𝑈− 𝑟𝑟 + 𝜌𝜌 𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙
− 𝑟𝑟 + 1 − 𝑈𝑈𝑖𝑖,𝑡𝑡,𝜙𝜙

𝑙𝑙 (𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖,𝑡𝑡
𝑦𝑦𝐶𝐶𝐶𝐶 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖,𝑡𝑡

𝑦𝑦𝐶𝐶𝐶𝐶 𝑟𝑟 + 𝜌𝜌 𝑦𝑦𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶 𝑟𝑟 + 1 − 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶(𝑟𝑟 + 1)

𝜆𝜆𝑡𝑡
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟 + 1 = 𝜆𝜆𝑡𝑡

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟 + 𝜌𝜌 𝑦𝑦𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝 𝑟𝑟 + 1 − 𝐼𝐼𝑡𝑡

𝑡𝑡𝑎𝑎𝑝𝑝(𝑟𝑟 + 1)

𝜆𝜆𝑖𝑖
𝑧𝑧1 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖

𝑧𝑧1 𝑟𝑟 + 𝜌𝜌 𝑖𝑖1,𝑖𝑖 𝑟𝑟 + 1 − 𝑔𝑔1(𝑋𝑋𝑖𝑖 𝑟𝑟 + 1 , 𝐼𝐼𝑖𝑖,𝑡𝑡𝐶𝐶𝐶𝐶(𝑟𝑟 + 1))

𝜆𝜆𝑖𝑖
𝑧𝑧2 𝑟𝑟 + 1 = 𝜆𝜆𝑖𝑖

𝑧𝑧2 𝑟𝑟 + 𝜌𝜌 𝑖𝑖2,𝑖𝑖 𝑟𝑟 + 1 − 𝑔𝑔2(𝑋𝑋𝑖𝑖 𝑟𝑟 + 1 , 𝐼𝐼𝑡𝑡
𝑡𝑡𝑎𝑎𝑝𝑝(𝑟𝑟 + 1))

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Iterative Process of ADMM

4242

Step.4 Increase k by 1 till it reaches the maximum iteration number.

Case Study
In this case study, the convergence analysis and simulation results of our proposed 
method are presented. 
• First, we present the convergence analysis to show the impact of different 

penalty parameter ρ on convergence speed. 

• We then demonstrate the effectiveness of our proposed method through 
numerical evaluations on three IEEE standard benchmarks to study load/loss 
reduction through CVR implementation.

• In all the simulations, the CVR functionality was tested over 3 hours of peak 
load period with 15-minute time steps.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.
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Algorithm Convergence: IEEE 13-bus System

4343

• Within certain range of 𝜌𝜌, the 
proposed algorithm can 
converge faster with larger  
values. 

• However, increasing  to a too 
large value will cause 
numerical instability and 
divergence.

In order to perform convergence studies, the proposed method is 
implemented on IEEE 13-bus system and the results are recorded at 
each iteration.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.5 Convergence of the distributed optimization: Impact of different 
penalty parameter values [9]
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Algorithm Convergence: IEEE 13-bus System

4444

• All the optimal voltage 
magnitudes have converged to 
values within [0.95 p.u., 1.05 
p.u.] interval, which satisfies 
the bus voltage limit 
constraints.

• Most of variables converge 
after 3000 iterations, while 
only a few take more than 4000 
iterations to converge. 

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.6 Convergence of the distributed optimization: Iterative updates of bus 
voltage magnitudes 𝜌𝜌 = 5 [9]

Fig.7 Convergence of the distributed optimization: Iterative updates of PV 
inverter reactive power outputs 𝜌𝜌 = 5 [9]
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Numerical Results: IEEE 34-bus System 

4545

The results of simulation studies on modified IEEE 34-bus distribution system (Fig. 
7) are presented in this section. 
• The substation OLTC is within ±10% tap range. 
• Two three-phase CBs are installed at buses 27 and 29, and the CB capacities are 

the same as the original system. 
• The PV generations are aggregated at buses 24, 30 and 32.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.8 Case II: Modified IEEE 34-bus test distribution system [9]

Table I ZIP Coefficients for each customer type [9]

Table II Bus Type [9]
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Numerical Results: IEEE 34-bus System 

4646

• For comparison, a base case without any VVO is 
defined, where unity-power factor control mode 
is used for PVs, the tap position of OLTC is 
fixed, and CB status is on.

• The optimal voltage magnitudes of Opt. 1 to 
Opt. 5 are generally lower than the base case 
(black solid line), which shows the voltage 
reduction effects of VVO.

• Due to the optimization constraints and the 
impacts of reactive power injection from PV 
inverters and CBs, the optimal voltage 
magnitude on a number of buses are slightly 
higher than the base case.

• Opt. 1 shows the lowest bus voltage, which 
demonstrates the CVR impact on voltage 
reduction, as a higher weight is assigned to 
voltage minimization component.

* Different weight factors: Opt.1, Opt.2, Opt.3, Opt.4 and 
Opt.5, 𝑤𝑤1,𝑤𝑤2  change from 1,0  to 0,1

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.9 Voltage profiles at t=1 and for 𝜙𝜙𝐴𝐴 of base case and cases Opt.1 to 
Opt. 5 [9]
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• Among the cases Opt.1 to Opt.5 and 
the base case, Opt.1 has the largest 
load reduction and Opt.5 has the 
largest loss reduction, which shows 
the effect of various 𝑤𝑤1  and 𝑤𝑤2 , 
respectively. 

• Hence, it is corroborated that by 
changing the weight factors in the 
optimization model the trade-off 
between CVR and loss minimization 
in the final decision solution can be 
controlled effectively.

* Different weight factors: Opt.1, Opt.2, Opt.3, Opt.4 and 
Opt.5, 𝑤𝑤1,𝑤𝑤2  change from 1,0  to 0,1

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.10 Load power consumption for the base case and cases Opt.1 to 
Opt. 5 [9]

Fig.11 Power losses for the base case and cases Opt.1 to Opt. 5 [9]
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• For ZIP1 and ZIP2, loss reduction levels 
are increasing from Opt. 5 to Opt. 1, 
however, the load reduction and total 
energy reduction decrease at the same 
time. 

• For voltage-dependent loads, ZIP1 and 
ZIP2, load reduction (due to voltage 
reduction) accounts for the majority of 
the change in total energy savings. 

• On the other hand, since CVR has no 
impact on the constant power loads, 
ZIP3, for that case load reduction is zero 
and the loss optimization is the only 
effective method to reduce the peak 
demand.

* Different weight factors: Opt.1, Opt.2, Opt.3, Opt.4 and 
Opt.5, 𝑤𝑤1,𝑤𝑤2  change from 1,0  to 0,1

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Table III Summary of system loss, load and total energy reduction with 
different ZIP coefficients and weight factor (IEEE 34-bus system) [9]
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• Voltage residues 𝑉𝑉∗ converge to zero as 
the iteration number, k, increases. 

• The algorithm converges to optimal 
solution within an acceptable number 
of iterations in a reasonable time.

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Fig.12 Modified IEEE 123-bus test distribution system [9]

Fig.13 Convergence of the distributed optimization: bus voltage residues 
at each iteration [9]

To test our proposed distributed algorithm on a larger system, simulation results for modified 
IEEE 123-bus distribution system with a higher number of PV inverters, CVs and OLTCs are 
shown.
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* Different ZIP factors: ZIP1, ZIP2 and ZIP3
* Different weight factors: Opt.1, Opt.2, Opt.3, Opt.4 and 
Opt.5

[9] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 
10, no. 5, pp. 5308-5319, Sept. 2019.

Table IV Summary of system loss, load and total energy reduction with 
different ZIP coefficients and weight factor (IEEE 123-bus system) [9]

• The conclusions drawn in Table. III 
regarding the tradeoff between 
voltage magnitude optimization and 
network loss reduction under 
different ZIP characteristics are 
again verified for the larger IEEE 
123-bus test system



51

Heuristic methods
In some cases, conventional optimization and distributed optimization methods are 
developed with some theoretical assumptions, such as convexity, differentiability 
and continuity, which may not be suitable for the actual OPF [12]. 

Therefore, heuristic methods have been widely used for solving OPF due to their 
properties like robustness, flexibility and converging global optimum (near global 
optimum).

• Genetic algorithm
GA creates a new population using gene of individuals belong to previous 
population. The individuals which have the best fitness degree are selected 
and new individuals are generated.

• Particle swarm optimization  
Food searching of birds in the space is similar to searching solution for a 
problem. Each individual solution is called a particle in searching space; it 
corresponds to a bird in the swarm. 

[12] M. Niu, C. Wan and Z. Xu, “A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems”, in Journal of 
Modern Power systems and Clean Energy, volume 2, issue 4, pp 289-297, Dec. 2014. 



52

Heuristic methods
Advantages:

• It will always give you a not so bad solution. 
• It is a derivative-free technique. 
• It is less sensitivity to the nature of the objective function compared to the 

conventional mathematical approaches. 
Disadvantages:

• It lacks somewhat a solid mathematical foundation for analysis to be 
overcome in the future development of relevant theories. 

• It requires relatively a longer computation time than conventional 
optimization methods. 

• The dependency on initial point and parameters
• Difficulty in finding optimal design parameters
• Stochastic characteristic of the final outputs

[13] K. Y. Lee and J. Park, "Application of Particle Swarm Optimization to Economic Dispatch Problem: Advantages and Disadvantages," 2006 IEEE PES Power 
Systems Conference and Exposition, Atlanta, GA, 2006, pp. 188-192.
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